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Abstract
We define sets of orthogonal polynomials satisfying the additional constraint
of a vanishing average. These are of interest, for example, for the study of
the Hohenberg–Kohn functional for electronic or nucleonic densities. We give
explicit properties of such polynomials, generalizing Laguerre ones. The nature
of the dimension 1 subspace completing such sets is described. A numerical
example illustrates the use of such polynomials.

PACS numbers: 02.30.Gp,02.30.Mv,21.10.Gv,21.60.−n,31.15.Ew,71.15.Mb

1. Introduction

Generalizations �n of Hermite polynomials Hn were recently [1] proposed to describe, for
instance, density perturbations constrained by a condition of matter conservation. Because
of the constraint, such polynomials cannot form a complete set, but span a subspace well
suited to specific applications. In particular, the polynomials �n used in [1] were motivated
by the consideration in nuclear physics of the Hohenberg–Kohn functional [2] and similar
functionals along the Thomas–Fermi method [3, 4]. Indeed, in such approaches, the ground
state of a quantum system is shown to be a functional of its density ρ(r), and there is a special
connection between ρ(r) and the mean field u(r) driving the system. It was thus convenient
to expand variations of ρ in a basis {wm(r)} of particle number conserving components,
δρ(r) = ∑

m δρmwm(r), with the term-by-term constraint, ∀m,
∫

dr wm(r) = 0. This spares,
in the formalism, the often cumbersome use of a Lagrange multiplier. Simultaneously, it was
convenient to expand variations of u in a basis orthogonal to the flat potential, because, trivially,
a flat δu, as just a change in energy reference, cannot influence the density. The same basis
can thus be used for δu(r) = ∑

n δunwn(r), since the very same condition,
∫

dr wn(r) = 0,

induces orthogonality to a constant δu. Because of the nuclear physics context of [1], harmonic
oscillators shell models were considered and the basis contained a Gaussian factor, e− 1

2 r2
.

The same functional approaches [2–4] are also of general use in atomic and molecular
physics, where Gaussian weights would be clumsy and radial properties are best fitted with
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simple exponential weights [5]. Furthermore, in [1], the discussion was restricted to one-
dimensional problems. In this paper, we want to include two- and three-dimensional situations.
We shall thus use weights of the form e− 1

2 r , with 0 � r < ∞, but integrals will carry a factor
rν, with ν being a positive exponent, suitable for dimension d. This will lead to generalizations
of Laguerre polynomials.

For any positive weight µ(r), and any dimension d, a constraint of vanishing average,∫
dr rνµ(r)�n(r) = 0, is incompatible with a polynomial � of order n = 0. Therefore, in

the following, the order hierarchy for the constrained polynomials runs from n = 1 to ∞,

while that for the traditional polynomials runs from 0 to ∞. We study in some generality the
‘Laguerre’ case in section 2. Section 3 answers a question which was omitted in [1], that of
the nature of the projector onto the subspace spanned by the constrained states and the nature
of the codimension of this subspace. A numerical application is provided in section 4. A
discussion and conclusion make section 5.

2. Modification of Laguerre polynomials by a constraint of zero average

In this section we consider basis states carrying a weight e− 1
2 r , in the form wn(r) = e− 1

2 rGd
n(r),

where Gd
n is a polynomial. It is clear that Gd

0 cannot be a finite, non-vanishing constant if
the constraint,

∫ ∞
0 dr rd−1 e− 1

2 rGd
0(r) = 0, must be implemented. Hence, set integer labels

m � 1 and n � 1 and define polynomials Gd
n by the conditions,∫ ∞

0
dr rd−1 e−rGd

m(r)Gd
n(r) = gd

nδmn,

∫ ∞

0
dr rd−1 e− 1

2 rGd
n(r) = 0, (1)

where δmn is the usual Kronecker symbol and the positive numbers gd
n are normalizations, to

be defined later.
It is elementary to generate such polynomials numerically, in two steps by brute force,

namely (i) first create ‘trivial seeds’ of the form, sd
n (r) = rn − 〈rn〉d , where the subtraction

of the average, 〈rn〉d = 2n(d − 1 + n)!/(d − 1)!, ensures that each trivial seed fulfils
the constraint, then (ii) orthogonalize such seeds by a Gram–Schmidt algorithm. The first
polynomials read

G1
1 = r − 2, G1

2 = r2 − 5r + 2, G1
3 = r3 − 10r2 + 20r − 8,

(2a)
G1

4 = r4 − 17r3 + 78r2 − 108r + 24,

G2
1 = r − 4, G2

2 = r2 − 8r + 8, G2
3 = r3 − 14r2 + 44r − 32,

(2b)
G2

4 = r4 − 22r3 + 138r2 − 288r + 144,

G3
1 = r − 6, G3

2 = r2 − 11r + 18, G3
3 = r3 − 18r2 + 78r − 84,

(2c)
G3

4 = r4 − 27r3 + 216r2 − 606r + 468.

All these are defined to be ‘monic’, namely the coefficient of rn is always 1. For an
illustration we show in figure 1 the new polynomials G1

1 and G2
1, together with Laguerre

polynomial L1. The same figure 1 also shows G1
2,G

2
2 and L2.

Rather using the Gram–Schmidt method, we find it easier, and more elegant, to generate
the polynomials Gd

n, starting from the initial table, equations (2a)–(2c), by means of the
following recursion formula

Gd
n(r) = (r − d)Gd

n−1(r) − 2rGd′
n−1(r) + (n + d − 1)(n − 2)Gd

n−2(r), (3)
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Figure 1. Comparison of Laguerre polynomials L1, L2 (full lines) with new polynomials G1
1, G

1
2

(long dashes), G2
1,G

2
2 (dashes).

where the prime denotes the derivative with respect to r. Its simple structure can be proven
analytically as follows.

(i) Let us first create some kind of a ‘less trivial seed’ at order n, assuming the polynomial
Gd

n−1 is known. For this, try rGd
n−1. By partial integration, we see that∫ ∞

0
dr rd−1 e− 1

2 r
[
rGd

n−1(r)
] = 2

∫ ∞

0
dr e− 1

2 r
[
rdGd

n−1(r)
] ′, (4)

where again a prime means derivation with respect to r. Thus σd
n ≡ (

rGd
n−1 − 2rGd′

n−1 −
2dGd

n−1

)
makes indeed a less trivial seed, compatible with the constraint. Note that the order

n of this seed polynomial σd
n comes from the term rGd

n−1 only, the other two terms having
order n−1. Note again that, in the table, equations (2), all polynomials Gd

n are monic. We can
define Gd

n as monic, systematically. Since the product rGd
n−1 respects this ‘monicity’ and σd

n

fulfils the constraint, we conclude that σd
n is a linear combination of Gd

n, with coefficient 1, and
of all the lower order polynomials Gd

m, with 1 � m < n, but with yet unknown coefficients.
(ii) It turns out that such coefficients vanish if m < n − 2. Indeed, an integration of σd

n

against Gd
m, weighted by rd−1 e−r , gives, by partial integration of the Gd′

n−1 term,∫ ∞

0
dr e−r rd−1σd

n (r)Gd
m(r) ≡

∫ ∞

0
dr rd−1 e−r

[
(r − 2d)Gd

n−1(r) − 2rGd′
n−1(r)

]
Gd

m(r)

=
∫ ∞

0
dr e−r rd−1Gd

n−1(r)(r − 2d)Gd
m(r) + 2

∫ ∞

0
drGd

n−1(r)
[
e−r rdGd

m(r)
] ′

=
∫ ∞

0
dr e−r rd−1Gd

n−1(r)
[−σd

m+1(r) − 2d Gd
m(r)

]
. (5)

In the bracket [ ] in the last right-hand side of equation (5) the seed σd
m+1 has order m + 1 and,

by definition, Gd
m is of order m. By definition also, Gd

n−1, of order n − 1, is orthogonal to
all those polynomials of lower order, that are compatible with the constraint. This integral,
equation (5), thus vanishes as long as m + 1 < n − 1. It can be concluded that the difference,
σd

n − Gd
n, contains only two contributions, namely those from Gd

n−2 and Gd
n−1. Explicit

forms for their coefficients are obtained by elementary manipulations, leading to equation (3).
Elementary manipulations also give

2rGd′′
n − (r − 2d)Gd′

n + nGd
n = (n − 1)(n + d)Gd

n−1. (6)
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Here, in the same way as a prime means first derivative with respect to r, we used double
primes for second derivatives. Finally, the normalization of the polynomials is obtained easily
as

gd
n ≡

∫ ∞

0
dr e−r rd−1

[
Gd

n(r)
]2 = (n − 1)!(n + d)!. (7)

3. Projectors on the constrained subspace and on the codimensional subspace

The lack of a constant polynomial in our new set is not a sufficient description of the
codimension imposed by the constraint. What is the projector on the ‘cosubspace’? For
the sake of the discussion and short notations, set first d = 1, µ(r) = e− 1

2 r , and temporarily
include factors of normalization to 1 into both Laguerre Ln and constrained G1

n,∫ ∞

0
dr[µ(r)]2Lm(r)Ln(r) = δmn,∫ ∞

0
dr[µ(r)]2G1

m(r)G1
n(r) = δmn, (8)∫ ∞

0
dr µ(r)G1

n(r) = 0.

Then the kets and bras defined by 〈r|wn〉 = 〈wn|r〉 = wn(r) = µ(r)G1
n(r) and 〈r|zn〉 =

〈zn|r〉 = zn(r) = µ(r)Ln(r) provide two ‘truncation’ projectors, PN = ∑N
n=1 |wn〉〈wn| and

QN = ∑N
n=0 |zn〉〈zn|, available for subspaces where polynomial orders do not exceed N. Their

respective ranks N and N + 1, and the embedding and commutation relation, [PN,QN ] = PN,

are obvious. Obvious also is the limit, limN→∞ QN = 1. The role of the rank one |σN 〉〈σN |
difference QN − PN is to subtract from any test state, |τ 〉 = ∑N

n=0 τn|zn〉, that part which
violates the condition of vanishing average. We shall show that the elementary ansatz,

|σN 〉 =
(

N∑
m=0

〈zm〉2

)− 1
2 N∑

n=0

〈zn〉|zn〉, 〈zn〉 =
∫ ∞

0
dr〈r|zn〉, (9)

defines the proper ‘subtractor’ operator |σN 〉〈σN |. Indeed, from

(QN − |σN 〉〈σN |) |τ 〉 =
N∑

n=0

τn|zn〉 −
(

N∑
m=0

〈zm〉2

)−1 (
N∑

n=0

〈zn〉|zn〉
)

 N∑
p=0

〈zp〉τp


 , (10)

one obtains∫ ∞

0
dr〈r| (QN − |σN 〉〈σN |) |τ 〉

=
N∑

n=0

τn〈zn〉 −
(

N∑
m=0

〈zm〉2

)−1 (
N∑

n=0

〈zn〉〈zn〉
) 

 N∑
p=0

〈zp〉τp


 = 0. (11)

Hence QN − |σN 〉〈σN | is the projector PN . Incidentally, the Laguerre result for σN is very
simple, because 〈zm〉 = 2,∀m. But the ansatz for σN, equation (9), generalizes to all cases. For
instance, with Hermite polynomials, odd orders already satisfy the constraint when integrated
from −∞ to ∞, naturally, and thus do not contribute to σN. Even orders contribute, and it is
easy to verify, upon integrating from −∞ to ∞ again, that 〈z2p〉2 = π

1
2 21−p(2p − 1)!!/p!.
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Figure 2. Shapes of projectors made of polynomials G1
n. Full line, 〈2|P150|r〉, long dashes,

〈2|P100|r〉, short dashes 〈2|P50|r〉.
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1
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Figure 3. Shapes of projectors made of polynomials G1
n. Full line, 〈10|P150|r〉, long dashes,

〈10|P100|r〉, short dashes 〈10|P50|r〉.

It may be pointed out that the condition,
∫

dr µ(r)f (r) = 0, for functions f

orthogonalized, like our polynomials, by a metric [µ(r)]2, might be interpreted as an
orthogonality condition,

∫
dr f (r)[µ(r)]2g(r) = 0, with g(r) = [µ(r)]−1. This makes g

a candidate for the subtractor form factor σ. But there is little need to stress that, when the
support of µ extends to ∞, then µ−1 does not belong to the Hilbert space and cannot be used
for σ.

More interesting is the limiting process, N → ∞, as illustrated by figures 2–5.
Figures 2 and 3 show the shapes, in terms of r, of 〈2|PN |r〉 and 〈10|PN |r〉, respectively,
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Figure 4. Subtractors made of G1
n. Shapes centred at r = 10. Short dashes, N = 10, long dashes,

N = 20, full line, N = 30.
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-0.08
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-0.04

-0.02

sbtr

Figure 5. Subtractors made of �n. Shapes centred at r = 0. Stronger wiggles, shorter cut-off,
dashed line, N = 50. Weaker wiggles, larger cut-off, full line, N = 100.

when the projectors are made of the modified Laguerre polynomials G1
n. The build up of an

approximate δ-function when N increases from N = 50 (short dashes) to N = 100 (long
ones) and N = 150 (full lines) is transparent although the convergence is faster when peaks
are closer to the origin; compare figures 2 and 3. The slower convergence in figure 3 is due
to the cut-off imposed by exponential weights as long as N is finite. Given N, there is a ‘box
effect’, the range of the box being of order ∼N. A similar build up is observed for our other
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families of constrained polynomials, with slightly different details of minor importance such
as, for instance, a box range ∼√

N for the Hermite case.
The box effect is even more transparent in figures 4 and 5, which show the shapes of

subtractors −〈10|σN 〉〈σN |r〉 and −〈0|σN 〉〈σN |r〉 deduced from constrained polynomials of
the Laguerre (figure 4) and Hermite (figure 5) type, respectively. (For graphical convenience,
the polynomials �1

n and Hn used for the Hermite case, figure 5, are tuned to a weight e−r2

rather than e− 1
2 r2

, but this detail is not critical.)
It seems safe to predict that, given an effective length �(N) for the box, the wiggles of the

subtractor will smooth out when N → ∞ and that only a background ∼ −1/�(N) will then
remain. An intuitive image of this may help, like that of the Dirac δ as an infinitely narrow
and high ‘peak’ with integral 1: the limit of the subtractor makes an infinitely broad and flat
‘pancake’ with integral −1.

4. Illustrative examples: trajectories in density space

Return temporarily to the toy model discussed in [1] and the corresponding modified Hermite
polynomials. The model consists of Z non-interacting, spinless fermions, driven by a one-
dimensional harmonic oscillator H0 = 1

2 (−d2/dr2 + r2). The ground-state density reads

ρ(r) = ∑Z
i=1[ψi(r)]2. Let i = 1, . . . , Z and I = Z + 1, . . . ,∞ label ‘hole’ and ‘particle’

orbitals, respectively. Add a perturbation δu(r) to r2/2. The variation of ρ is

δρ(r) = 2
∑
iI

ψi(r)ψI (r)
〈I |δu|i〉
i − I

. (12)

If we expand δu and δρ in that basis {wn} provided by the new polynomials, the formula,
equation (12), becomes

δρm = 2
∑
iIn

DmiI

1

i − I
DniI δun, DniI ≡

∫
dr wn(r)ψi(r)ψI (r), (13)

where D denotes both a particle–hole matrix element of a potential perturbation and the
projection of a particle–hole product of orbitals upon the basis {wn}. In [1] we briefly
studied the eigenvalues and eigenvectors of this symmetric matrix, F = D(E0 − H0)

−1D̃,

where (E0 − H0)
−1 is a short notation to account for the denominators and the particle–hole

summation, and the tilde indicates transposition. It is clear that the invertible F represents
the functional derivative δρm/δun and is suitable for infinitesimal perturbations. We shall now
take advantage of the representation provided by {wn} to study finite trajectories ρ(u).

For this, we consider a variable Hamiltonian, Hm(λ) = H0 + λwm(r), made of the initial
harmonic oscillator, but with a finite perturbation �u along one ‘mode’ wm. It is trivial to
diagonalize Hm(λ) with an excellent numerical accuracy and thus obtain, given Z, the ground-
state density ρ(r, λ). Then it is trivial to expand the finite variation, �ρ = ρ(r, λ) − ρ(r, 0),

in the basis {wn}. This defines coordinates �ρn(λ;m) for trajectories, parametrized by the
intensity of the chosen mode m for �u.

In figures 6 and 7 we show, with Z = 4, results from H4 = H0 + λ42(2π)−
1
4 15− 1

2 (8r4 −
14r2 + 1) e−r2

and H6 = H0 + λ6(2π)−
1
4 105− 1

2 (32r6 − 128r4 + 94r2 − 11) e−r2
, respectively.

The case, H2 = H0 + λ22(2/π)
1
4 3− 1

2 (2r2 − 1) e−r2
, almost makes a harmonic oscillator for

small values of λ2 and is probably of academic interest only; anyhow we verified that it
confirms the results with H4 and H6. We use a basis {wn} containing a factor e−r2

rather than
e− 1

2 r2
to better match the same factor e−r2

created by products of harmonic oscillator orbitals
in the calculation of matrix elements 〈zp|�u|zq〉, but this technicality is not important for the
physics.
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0.5 1 1.5 2
u4

-0.2

-0.1

0.1

rho_n

Figure 6. Harmonic oscillator toy model. Coordinates of the perturbation density �ρ created by
a perturbing potential �u = λ4w4. Full line: 2�ρ2. Long dashes: �ρ4. Medium dashes: 2�ρ6.

Short dashes: 4�ρ8. Very short dashes: 8�ρ10.

0.5 1 1.5 2
u6

-0.3

-0.2

-0.1

0.1

rho_n

Figure 7. Same as figure 6, but now �u = λ6w6. Full line: 4�ρ2. Long dashes: 2�ρ4. Medium
dashes: �ρ6. Short dashes: 2�ρ8. Very short dashes: 4�ρ10.

The main result to be observed seems to be the lack of ‘collectivity’ for such modes and
for such elementary Hamiltonians. Indeed, for λ4 = 2, the first five coordinates of �ρ read
{0.016,−0.267,−0.055, 0.023, 0.018}, with a strong dominance of �ρ4, while for λ6 = 2,

these read {−0.013,−0.041,−0.376, 0.008, 0.040}, with a strong dominance of �ρ6. To
clarify figures 6 and 7, we had indeed to magnify each �ρn by a factor 2|n−m|, where m is the
index of the driver mode in potential space. Other modes than m = 4 and m = 6 show the
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4rho6

0
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0.04
0.06
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4rho8  

Figure 8. 3D trajectory in density space. �ρ4,�ρ6 and �ρ8 taken from figure 6; the latter two
coordinates magnified four times.

same property: in the density space, a trajectory driven by �u = λwm stays close to the same
wm axis in that density space, although curvatures effects, while somewhat modest, are not
absent. Such non-linearity, slight curvatures are seen in figures 6 and 7, and also in figure 8,
where the three �ρ4,�ρ6,�ρ8 sets of data shown by figure 6 are converted into a parametric
plot for a trajectory. For graphical purposes again, �ρ6 and �ρ8 are magnified four times
to create figure 8. It can be concluded, temporarily, that the ‘flexibility’ matrix F is not too
far from being diagonal in the {wn} basis, or in other words, that the wn modes indicate an
approximately natural hierarchy in both the potential and the density spaces.

A subsidiary question arises: that of the positivity of ρ. Indeed, while the space of
potentials is basically a linear space, with arbitrary signs for u(r) when the position r
changes, densities ρ(r) must remain positive for every r. This creates severe constraints
for any linear parametrization of �ρ in terms of the basis {wn}. In our toy model, it turns
out that ρ(r, 0) = π− 1

2 (8r6 − 12r4 + 18r + 9) e−r2
/6. Hence, if we truncate �ρ to have two

components only, w2 and w4 for instance, then ρ is the product of e−r2
and a polynomial

P(r) :

6π
1
2 P(r) = 8r6 − 12r4 + 18r2 + 9 + �ρ212(2π)

1
4 3− 1

2 (2r2 − 1)

+ �ρ412(π/2)
1
4 15− 1

2 (8r4 − 14r2 + 1). (14)

Rescale out inessential factors, for a simpler polynomial, P̄ = 8r6 − 12r4 + 18r2 + 9 +
�R2(2r2 − 1) + �R4(8r4 − 14r2 + 1). Eliminate r between P̄ and dP̄/dr. The resultant
R(�R2,�R4), when it vanishes, gives the border of the convex domain of parameters
�R2,�R4 where P̄ remains positive definite. This domain contains the origin, because
of ρ(r, 0). The precise form of R is a little cumbersome and does not need to be published
here. But the resulting border is shown in figure 9. Generalizations to more �ρ parameters
are obvious, with more cumbersome resultants R.

Another model, that uses Laguerre and our modified Laguerre polynomials, is in order.
Consider a hydrogenoid, suitably scaled Hamiltonian, H0 = −d2/dr2 − 2/r. We use here
s-wave, radial forms only. All subsequent integrations will mean

∫ ∞
0 r2 dr, naturally.

With the usual spectrum −1,−1/4,−1/9, etc the lowest three orbitals of H0 then read,
ψ1 = 2 e−r , ψ2 = (1 − r/2) e−r/2/

√
2, ψ3 = 2

√
3(1 − 2r/3 + 2r2/27) e−r/3/9. These will

make a reference density ρ0 in a Z = 3 hydrogenoid toy model with just s-waves. Then we
perturb the Hamiltonian by means of a potential proportional to mode G3

1. More precisely,
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h
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Figure 9. Domain of values of �R2 and �R4 acceptable for the positivity of the density of the
harmonic oscillator toy model. The domain sits inside the full line curve and left of the straight
line. It contains the origin.

-1 -0.5 0.5 1
u1

-0.03

-0.02

-0.01

0.01

0.02

0.03

rho1234

Figure 10. Second toy model, Z = 3 hydrogenoid s-density perturbed by mode G3
1. Components

of the density perturbation: �ρ1, full line; �ρ2, long dashes; �ρ3, medium dashes; �ρ4, small
dashes.

set H = H0 + u1(r − 6) e−r/2/(2
√

6). Obtain the density ρ(r, u1) from the lowest three
s-wave eigenstates of H. ‘Coordinates’ in density space result from projecting the difference
�ρ = ρ(r, u1) − ρ0 upon the basis spanned by the G3

n polynomials, suitably weighted and
normalized, namely �ρn(u1) = ∫ ∞

0 r2 dr�ρ(r, u1) e−r/2G3
n(r)/

√
(n − 1)!(n + 3)!. Results

for the first four components, �ρ1, . . . , �ρ4, are shown in figure 10. One sees that, in
contrast to the previous toy model, that with Hermite-like polynomials, the component
with the same order as the perturbing potential does not seem to dominate the response
�ρ. A few components, however, seem to suffice for the reconstruction of �ρ. For
instance, for that value u1 = −1 which corresponds to the strongest response we
calculated, the squares of eight components {�ρ1, . . . ,�ρ8} = {0.0945,−0.0534, 0.0736,

−0.0576, 0.0576,−0.0336, 0.0176,−0.0107}, add up to 0.025 39, to be compared with
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0.025 43 = ∫ ∞
0 r2 dr[�ρ(r,−1)]2. This seems to mean a satisfactory reconstruction with

few degrees of freedom. For the sake of rigour, however, the conclusion must be suspended,
pending an estimate of continuum components in the eigenorbitals, for the present results are
based on expansions in discrete hydrogenoid orbitals only.

In any case, it can be stressed that the density, while being a highly non-linear
physical ‘effect’ with respect to potential ‘causes’ and resulting orbitals and correlations,
can conveniently be considered as a vector to be expanded in the bases spanned by our
weighted, constrained polynomials.

5. Discussion and conclusion

The subject of orthogonal polynomials has been so treated and overtreated that any claim to
novelty must contain much more than a change of the integration measure. We took therefore
a different approach, motivated by a law of physics and/or chemistry, matter conservation.
This means a constraint of a vanishing average for the states described by weighted
polynomials.

For a support [0,∞[ and a simple exponential weight such as e− 1
2 r , a non-trivial

generalization of Laguerre polynomials occurs. This extends the generalization of Hermite
polynomials described in [1] with the support ]−∞,∞[ and Gaussian weights such as e− 1

2 r2
.

We also took care of cylindrical and spherical geometries, by replacing
∫

dr with
∫

dr r

and
∫

dr r2, respectively. The new set of constrained polynomials is clearly sensitive to the
geometry.

For finite supports such as [0, 1] and constant weights, the constraint is already satisfied
by the usual brand of orthogonal polynomials as soon as their order is �1. The reason for
such a trivial result is transparent: when the weight µ(r) is a constant, there is no difference
between the orthogonality metric µ2 and the constraint weight µ.

For the new polynomials generalizing Laguerre ones, we found a recursion relation
and a differential equation. Recursion and differentiation are entangled. The same oddity
occurs in the ‘constrained Hermite’ [1] case. This does not happen for traditional orthogonal
polynomials, and this ‘entanglement’ may deserve some future attention.

For both new polynomials generalizing the Hermite and Laguerre ones, we found a precise
description of the subspace accounting for their defect of completeness. A codimension 1 is
the consequence of the constraint, expressed at first by the obvious lack of a polynomial of
order n = 0.

Finally, the use of such polynomials was illustrated by toy models for the Hohenberg–
Kohn connection between density and potential. A slightly surprising result was found: our
polynomials, those of low order at least, sometimes may define potential perturbations reflected
by density perturbations having almost the same shapes. This occurs despite the delocalization
due to the kinetic energy operator, hints at short ranges in effective interactions and validates
the localization spirit of the Thomas–Fermi method. Whether such hints are good when the
full zoology of the density functional is investigated is, obviously, an open question; for a
review of the richness of the functional, we refer to [6]. If long range forces are active, a
significant amount of delocalization between the ‘potential cause’ and the ‘density effect’ is
not excluded. It would be interesting indeed to discover collective degrees of freedom in this
connection between potential and density. In any case, our main conclusion may be that the
new polynomials provide, for the context of matter conservation, a discrete and full set of
modes and coordinates, hence a systematic and constructive representation of phenomena.
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Appendix

The formula given by an anonymous referee to relate the polynomials Gd
n to usual Laguerre

polynomials reads

Gd
n(r) = −

n∑
j=1

j2j (d + 1 + j)n−j (1 − n)j−1L
d−1
j

( r

2

)
, (A.1)

where (m)i is the ‘Pochhammer rising factorial’, (m)i = m(m + 1) · · · (m + i − 1). We copy
here his derivation.

Since the usual Laguerre polynomials,

Lα
n(r) = (α + 1)n/n!

n∑
j=0

(−n)j/(α + 1)j r
j /j !, (A.2)

are orthogonal when integrated with metric measure drrα e−r , it is trivial that the polynomials
Lα

n

(
1
2 r

)
are orthogonal when integrated with metric measure drrα e− 1

2 r . In particular, since

Lα
0 = 1,∀α, then

∫ ∞
0 dr rα e− 1

2 r1 × Lα
n

(
1
2 r

) = 0, provided n � 1. Set therefore α = d − 1.

The constraint of a vanishing average in dimension d is thus satisfied by an expansion of the
polynomials Gd

m(r) in the polynomials Ld−1
n

(
1
2 r

)
, n � 1.

There remains the need of a reorthogonalization of such polynomials Ld−1
n

(
1
2 r

)
with

respect to drrd−1 e−r . Obtain first the scalar product of Lα
m

(
1
2 r

)
and Lα

n

(
1
2 r

)
. It derives from

the coefficient of smtn in the expansion of the following scalar product of generating functions∫ ∞

0
dr rα e−r (1 − s)−α−1 exp

(
− sr/2

1 − s

)
(1 − t)−α−1 exp

(
− tr/2

1 − t

)

= (1 − s)−α−1(1 − t)−α−1
∫ ∞

0
dr rα exp

[
−r

1 − (s + t)/2

(1 − s)(1 − t)

]

= �(α + 1)

(
1 − s + t

2

)−α−1

= �(α + 1)

∞∑
j=0

(α + 1)j (s + t)j

j !2j
, (A.3)

and hence ∫ ∞

0
dr rα e−rLα

m

( r

2

)
Lα

n

( r

2

)
= �(α + 1)

(α + 1)m+n

2m+nm!n!
. (A.4)

Now consider that map which, ∀ n � 0, replaces rn by [(α + 1)(α + 2)]−
1
2 2n+1

(n + 1)!Lα
n+1

(
1
2 r

)
. The map will induce an isometry, by linear extension, from L2[(0,∞);

�(α + 3)−1rα+2 e−r ] into L2[(0,∞);�(α + 1)−1rα e−r ]. Indeed, recall the scalar product,∫ ∞
0 dr rα+2 e−r rmrn = �(α + 3)(α + 3)m+n, and compare it with the right-hand side of

equation (A.4). One can now use, to orthogonalize the set,
{
Lα

1

(
1
2 r

)
, Lα

2

(
1
2 r

)
, Lα

3

(
1
2 r

)
, . . .

}
,

that same construction of an orthogonal basis in space L2
[
(0,∞);�(α + 3)−1rα+2 e−r

]
, which

consisted in making the polynomials Lα+2
n (r), n = 0, 1, 2, . . . , etc from the monomials

rn, n = 0, 1, 2, . . . , etc.
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Thus, inside (n−1)!Lα+2
n−1(r), see equation (A.2) with α+2 instead of α and (n−1) instead

of n, replace each monomial rj , j = 0, 1, . . . , n − 1, by 2j+1(j + 1)!Lα
j+1

(
1
2 r

)
. This produces

a polynomial proportional to Gd
n(r), with n � 1. A calculation with leading coefficients

finishes the derivation. Since
∫ ∞

0 dr rα+2 e−rLα+2
m (r)Lα+2

n (r) = δmn�(α + 3)(α + 3)n/n!, then∫ ∞
0 dr rd−1 e−rGd

mGd
n(r) = δmn�(d)(d)n+1(n − 1)!.
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